Why Sound?

- Emotional Impact
- Improved Presence
- Situational Awareness
- Sensory Substitution
- Better Graphics
- Product Recognition
3D Sound: Rendering Pipeline

• Emitter Model
 – How we represent sound sources

• Propagation
 – Modeling what happens to the sound once it leaves the emitter

• Localization
 – Creating the illusion of a positional source
Emitter Model

• Source Representation
 – How to represent the waveform produced by the source

• Source Intensity
 – Relative loudness of the source

• Radiation Pattern
Sample Playback

• Simplest approach to modeling an emitter is to use prerecorded sounds

• Use sound libraries or field recordings

• Problem:
 – Cannot easily modify sounds to match motion (ex. force of impact)
 – Sound files are typically large
Synthesis Techniques

• Use a procedural representation of sound
• Sound synthesis systems were developed primarily for musical applications
• Timbre Trees
 – one of the first attempts to parametrically synthesize sounds from motion parameters
• Sound signal is represented as functional composition
Timbre Trees

• Evaluating the tree at time τ produces a single sample

• Video

\[
(sine (+ freq (* 100 (sine (* 1.5 t)))))
\]
Physically-based Synthesis

• Idea is to generate sounds automatically from 3D models using dynamic simulation
• O’Brien, Cook, Essl – FEM data generated for deformable body simulator was used to calculate sound waves
• Doel, Kry, Pai – FoleyAutomatic: modal resynthesis based on contact data
Source Intensity

- Decibels (dB) \[dB = 10 \log_{10} \left(\frac{I_2}{I_1} \right) \]
- Dimensionless, relative, logarithmic
- \[I \propto A^2 \]
- dB pressure level \[dB = 10 \log_{10} \left(\frac{p_2^2}{p_1^2} \right) \]
- \[dB = 20 \log_{10} \left(\frac{p_2}{p_1} \right) \]
- dB SPL \[dB = 20 \log_{10} \left(\frac{p}{20 \mu Pa} \right) \]
Source Intensity

- Radiation Pattern
 - Usually represented as a set of concentric cones
Spatialization

• Spatialization is the process of recreating auditory cues in order to create the illusion of a positional sound source

• In order to spatialize sounds we must:
 – Recreate distance cues
 – Recreate position cues
Distance Cues

• The intensity of a sound is the primary cue used to judge distance
 – Problem is that a listener’s familiarity with a sound influences this judgment

• Spectral composition of sound is also used to judge distance
 – High frequency components dissipate faster

• R/D ratio
Propagation Effects: Spreading Loss

- Sound traveling in free field conditions dissipates according to the inverse square law $1/r^2$
Propagation Effects: Spreading Loss

- We rarely hear point sources in free field conditions
- Surfaces near the source limit radiation pattern
- Reflected sounds reaching the listener greatly increases the energy reaching the listener
Propagation Effects: Spreading Loss

• Implementation of spreading loss
 – \(I \propto A^2 \)
 – Multiply waveform by \(D = \sqrt{\frac{1}{4\pi d^2}} = \frac{1}{3.55d} \)

• This does not take energy of reflected sound into account
Propagation Effects: Absorption

- Absorption occurs due to air particle friction
- Amount of energy lost is frequency dependent: higher frequencies result in higher friction
- Can use a low pass filter to simulate absorption
Propagation Effects: Refraction

• Atmospheric refraction can greatly effect the audibility of sounds in an outdoor environment
• Temperature inversion causes sound waves to bend back to earth
 – Sound velocity is greater in warmer air
• Wind speed gradients also cause to refract: Sound velocity is also effected by wind
Propagation Effects: Reverberation

• Similar to light, sound is a wave phenomenon that exhibits reflection, refraction, absorption and inverse square attenuation

• Unlike light, sound also can diffract around obstacles on a human scale and travel through nearly any barrier
Propagation Effects: Reverberation

- Sound energy reaches a listener via direct and reflected paths
- Order of reflection is the number of bounces before reaching the listener
Propagation Effects: Reverberation

- Room impulse response is a characteristic curve showing the reverberation characteristics of a room.
Propagation Effects: Reverberation

• Simulating sound propagation is a difficult problem
 – Main approach utilizes ray tracing from the source through the environment to find occlusions, first and second order reflections.
 – Further reflections are approximated by a reverberant tail
Position Cues

• The human auditory system localizes position of sound based on
 – Head Related Transfer Functions (HRTF)
 • Pinnea response
 • Shoulder echo
 – Interaural Time Difference (ITD)
 – Head shadowing or Interaural Intensity Difference (IID)
Localizing Sounds

• There are two predominant methods for spatializing sounds both are empirical methods:
 – Binaural techniques recreate HRTF, ITD and IID effects
 – Speaker panning techniques recreate the sound field by panning sounds among a set of speakers surrounding the listener
Binaural Techniques

• HRTFs can be measured directly by
 – Placing probe microphones in a listener’s ears
 – A pulse is played over set of speakers placed at positions surrounding the listener
 – The sound reaching the probe microphone inside the listener’s ear represents the effect of HRTFs for that source position
 – This can be encoded as a FIR filter
Binaural Techniques

- HRTF at 0°, 10°, 20° and 30° elevation
Binaural Techniques

• To place a sound in a location
 – For each ear
 • Find the 4 measured HRTF filters surrounding that location
 • Find the filter coefficients for the source location by interpolation the 4 surrounding filters’ coefficients
 • Apply the resultant filter to the source
Binaural Techniques

• ITD & IID
 – IID is normally encoded in the HRTF
 – To recreate ITD
 • Calculate the delay from source to each ear
 • Using a delay line apply the delay to left and right output channels

• When heard over headphones, the result is an impression of a positional source
Binaural Techniques

• Problems
 – HRTFs often result in internalization
 • Sounds appear to be inside the listener’s head
 – When sounds are externalized, HRTFs still do not recreate the impression of a distance source
 – Front-back reversals are also common where a sound in front of the listener is perceived to be in the back
 – These problems can be improved by measuring customized HRTFs for each listener
Panning Techniques

• Instead of recreating HRTF, ITD and IID effects, we can recreate the sound field directly by surrounding the listener with a set of speakers

• In order to spatialize a sound, it is panned between the speakers surrounding that position

• Stereo is a 1D speaker panning technique
Panning Techniques

• We can extend stereo to three dimensions by using 8 speakers and panning the source between those speakers

• Two panning algorithms
 – Constant intensity
 • Maintains a constant intensity of sound across the pan
 – Vector Based Amplitude panning
 • Uses any number of speakers panning between speaker triplets
Panning Techniques

• Problems
 – Panning techniques cannot generally place sounds inside the speaker enclosure (listening space)
 – Technique gives only a weak impression of a sound’s location
 – Speaker panning doesn’t reproduce correct elevation cues
Panning Techniques

• Actual source

• Panned source
Binaural Recording

- Record sound using 2 microphones implanted in a dummy head
- Recreates binaural effects when heard over headphones
Sound Hardware

• PC Sound Cards
 – ISA with FM synthesis
 – ISA with Wavetable synthesis
 – PCI with Wavetable synthesis
 • Support for DLS standard
 – Current cards provide hardware acceleration of 4 speaker panning, HRTF, Dolby 5.1 decoding
Sound Hardware

• Pro Audio Cards
 – Early systems used proprietary interfaces to output audio to an external A/D box
 – ADAT Lightpipe technology provided a standard to link pc and external A/D box
 – Current generation uses Firewire to shuttle digital audio back and forth
Specifications

• Sampling Rate
 – 22050, 44100, 96K
 – Nyquist theorem

• Sample Width
 – 8, 16, 20, 24
 – Quantization Error
 – S/N = 6n
API: General

- DirectSound & OpenAL
- Use the audio buffer as a first class modeling entity
- Support a single listener
- Make use of hardware acceleration
- Make use of EAX extensions
API: OpenAL

• Not an “open” version of SGI’s AL library
• Provides a GL like syntax for sound
• Main advantage: cross platform support
• OpenAL Specifies API but not 3D audio implementation
API: OpenAL

• Create Context
 – Device=alcOpenDevice((ALubyte*)"DirectSound3D");
 – Context=alcCreateContext(Device,NULL);
 – alcMakeContextCurrent(Context);

• Core OpenAL API operates under assumed context

• Audio library context provides OS bindings
 – ALC is portable across platforms
API: OpenAL

- **Only one listener: configure**
 - `alListenerfv`
 - Position, velocity, orientation

- **Create Buffers and fill them**
 - `alGenBuffers(NUM_BUFFERS, g_Buffers);`
 - `alutLoadWAVFile("footsteps.wav", &format, &data, &size, &freq, &loop);`
 - `alBufferData(g_Buffers[0], format, data, size, freq);`
 - `alutUnloadWAV(format, data, size, freq);`
API: OpenAL

• Create and configure sources
 – alGenSources(1,source);
 – alSourcef(source[0],AL_PITCH,1.0f)
 • Pitch, Gain, Position, Velocity, Looping

• Attach source to buffer
 – alSourcei(source[0], AL_BUFFER, g_Buffers[0]);

• Control play state
 – alSourcePlay(source[0]);
 – alSourceStop(source[0]);
API: DirectSound3D

• Microsoft’s DirectX Sound component
 – Uses capabilities found in sound cards to spatialize sounds
 – Uses software implementations when capabilities are not present in hardware

• In DirectX 8 3D sound through DirectSound or DirectMusic
API: DirectSound3D

• DirectSound Buffers
 – Hold waveform data
 – Application must provide waveform data for buffers
 – Buffers are manipulated through their interface
 – Have three interfaces
 • Standard buffer
 • 3D buffer
 • Property sets make DirectSound extensible
API: DirectSound3D

• Primary Buffer
 – One instance
 – Effectively the listener
 – All sources are mixed into primary buffer before sending to output device

• Secondary Buffers
 – One per sound source
 – Application fills with sound data
API: DirectSound3D

• Helper utils in dsutil encapsulate much of the buffer creation work

• Create and configure IDirectSound object

  ```cpp
  g_pSoundManager = new CSoundManager();
  ```

• Initialize

  ```cpp
  hr = g_pSoundManager->Initialize( hDlg, DSSCL_PRIORITY, 2, 22050, 16 );
  ```
API: DirectSound3D

• Get a pointer to the listener

 hr |= g_pSoundManager->Get3DLlistenerInterface(&g_pDSLlistener);

• Open a wave file and load it into buffer

 hr = g_pSoundManager->Create(&g_pSound, strFileName,
 DSBCAPS_CTRL3D, DS3DALG_HRTF_FULL);

• Control Sound

 g_pSound->Play(0, DSBPLAY_LOOPING)

 g_pSound->Stop();

 g_pSound->Reset();

GWU
API: DirectSound3D

• Move Source

 memcpy(&g_dsBufferParams.vPosition, pvPosition, sizeof(D3DVECTOR));

 memcpy(&g_dsBufferParams.vVelocity, pvVelocity, sizeof(D3DVECTOR));

 g_pDS3DBuffer->SetAllParameters(&g_dsBufferParams, DS3D_IMMEDIATE);

• Or Listener

 g_pDSListener->SetAllParameters(&g_dsBufferParams, DS3D_IMMEDIATE);
API: EAX

- DirectSound & OpenAL only provide a distance model
 - Spreading loss
 - Absorption
- They do not model reverberation or sound occlusion and obstruction
API: EAX

• Developed by Creative, provides extensions to both APIs to model
 – Reverberation
 – Early reflection
 – Occlusion – source in a different room
 – Obstruction – object obstructing direct path between source and listener
API: EAX

- EAX extends DirectSound through property sets
 - Obtain an EAX interface for each secondary buffer and use it to control propagation model
 - Obtain EAX interface for the primary buffer (must do it through one of the secondary buffers) to control reverberation model
API: EAX

• EAX extends OpenAL through API extensions
 – Obtain addresses for extension functions: EAXSet and EAXGet
 – Set both listener and source EAX properties

• More Info:
Assignment

• Using either DirectSound or OpenAL, create a virtual sonic environment with at least one source and one listener

• Demonstrate:
 – Source control: start, stop
 – Source/listener motion: translation, rotation
 – Source occlusion/obstruction and room reverberation